WRITTEN HOMEWORK \#5, DUE FEB 10, 2010

(1) (Chapter 16.9, Problem \#17a) Evaluate $\iiint_{E} d V$, where E is the solid enclosed by the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$. Use the transformation $x=a u, y=b v, z=c w$. You may want to use the fact that the determinant of a diagonal matrix is equal to the product of the elements on the diagonal.
(2) (Chapter 16.9, Problem \#22) Evaluate $\iint_{R} \sin \left(9 x^{2}+4 y^{2}\right) d A$, where R is the region in the first quadrant bounded by the ellipse $9 x^{2}+4 y^{2}=1$. (Hint: the coordinate change you want is a slight variation on polar coordinates.)
(3) (Chapter 17.2, Problem \#34) A thin wire has the shape of the part of the circle $x^{2}+y^{2}=a^{2}$ in the first quadrant. If the density function is $f(x, y)=k x y$ (k some positive constant), find the mass and center of mass of the wire.
(4) (Chapter 17.2, Problem \#46) The base of a circular fence with radius 10 m is given by $x=10 \cos t, y=10 \sin t$. The height of the fence at position (x, y) is given by the function $h(x, y)=4+0.01\left(x^{2}-y^{2}\right.$, so the height varies from $3 m$ to $5 m$. What is the surface area of one side of the fence? (You can ignore the part of the question in the text about paint.)
(5) (Chapter 17.1, Problem \#6) Sketch the vector field

$$
\mathbf{F}(x, y)=\frac{y \mathbf{i}-x \mathbf{j}}{\sqrt{x^{2}+y^{2}}} .
$$

(6) (Chapter 17.1, Problem \#26) Let $f(x, y)=\sqrt{x^{2}+y^{2}}$. Find the gradient vector field ∇f of f and sketch it.

